Agroecosistemas sostenibles y equilibrio hidráulico

La sostenibilidad de un agroecosistema depende de una serie de factores naturales que son función de las condiciones de suelo, clima y orografía del terreno sobre el que se asienta. El agua disponible es un elemento clave para la sostenibilidad del agroecosistema, pero no es el único. La tecnología y la adecuada gestión de la flora y fauna, tanto silvestre como doméstica, son otros elementos clave para mantener la sostenibilidad a lo largo del tiempo.

Cuando el ser humano interviene sobre un ecosistema natural para obtener los recursos que necesita lo puede hacer de dos formas:

  1. De forma insostenible.
  2. De forma sostenible.

La forma insostenible es aquella en la que hay que invertir cada vez mas recursos, principalmente trabajo y tecnología, para evitar que el ecosistema deje de proporcionar los recursos que el ser humano necesita. Esto quiere decir que se resuelven los problemas conforme van apareciendo en lugar de disponer de una estrategia general de gestión de los recursos naturales para controlar los problemas y adoptar soluciones.

La forma sostenible es aquella en la que solo hay que invertir los recursos necesarios para controlar los problemas que puedan aparecer y anticiparse a la previsible evolución del ecosistema para tomar las medidas previstas. Hay que destacar que cualquier forma sostenible de gestión de los recursos naturales va a ser dinámica en el tiempo en función del comportamiento en cada momento del ecosistema, tanto si favorece a los intereses de los seres humanos como si no lo hace. Esto quiere decir que la estrategia tiene un alto componente preventivo y de adaptación a los posibles cambios que puedan aparecer.

Dentro de lo que puede ser una forma sostenible de gestionar un ecosistema, también podemos distinguir entre la gestión sostenible equilibrada y la gestión sostenible mejorada.

En el primer caso, se busca optimizar los recursos naturales disponibles en el ecosistema estableciendo un mecanismo de reparto entre los recursos que va a ir al ser humano, sus cultivos y su ganadería, respecto de los recursos que van a ir a la flora y fauna silvestre. La autorregulación de las distintas poblaciones y el respeto a los ciclos naturales son dos elementos clave para la optimización.

Por otra parte, en el segundo caso, además de establecer un mecanismo de reparto de los recursos naturales, se busca mejorar la cantidad y utilidad de los recursos a un nivel superior. Esto favorece que haya una mayor cantidad de recursos para repartir o un mejor uso de los recursos disponibles, además de una menor presión sobre la regulación de las distintas poblaciones, aunque sigue siendo necesario respetar los ciclos naturales (agua, nutrientes, suelo, …). La tecnología adquiere un papel protagonista para obtener mayores rendimientos de los recursos disponibles o incrementar la cantidad de recursos disponibles, y eso se puede hacer interviniendo sobre factores bióticos (mejora vegetal y ganadera, maquinaría, manejo integrado de plagas y enfermedades, …) o sobre factores abióticos (infraestructuras hidráulicas, protección contra la erosión, mejora de la infiltración, …).

En ambos casos, la cantidad de agua accesible es un factor clave porque todos los seres vivos del ecosistema dependen de ella para vivir.

Veamos a continuación sendos ejemplos de agroecosistemas sostenibles: equilibrados y mejorados.

LA DEHESA

La dehesa es un agroecosistema sobre el que hay cierto grado de acuerdo en la comunidad científica respecto a su sostenibilidad. No es exclusivo de España, aunque de ahí procede su denominación.

Desde un punto de vista general, la dehesa es un agroecosistema equilibrado en el que existe una o un grupo de especies vegetales destacadas, normalmente de gran longevidad, de la que o de las que se aprovecha directamente el ser humano, sus cultivos, su ganado y la flora y fauna silvestre. En el caso concreto de la dehesa española, la especie vegetal destacada suele ser la encina (Quercus Ilex) o el alcornoque (Quercus suber) de donde los seres humanos extraemos madera, corcho, bellotas, carbón vegetal, hongos o setas, pastos, etc.; tenemos diferentes cultivos (trigo, cebada, altramuz, …); diferentes especies de ganado (porcino, vacuno, aviar, …) e, incluso, se “aprovecha” la flora y la fauna silvestre mediante la caza, la pesca o la recolección. Y todo ello manteniendo bastante bien los servicios de la fauna y flora silvestre en cuanto a protección contra la erosión (hidráulica y eólica), protección contra plagas y enfermedades (consumo de insectos, control de vectores de enfermedades, depredación de parásitos, …), retención del agua del suelo, etc.

Nopal o Chumbera (Opuntia ficus-indica)

Como hemos comentado, no es un agroecosistema exclusivo de España, ya que en otros lugares del planeta existen agroecosistemas bastante similares en su esencia. Por ejemplo, en grandes áreas de México existe algo parecido a la dehesa española donde la especie vegetal destacada es el Nopal (Opuntia ficus-indica) que se aprovecha directamente por los seres humanos como alimento (frutos y nopal-verdura) o combustible (madera) y por el ganado, además de ser una fuente valiosa de recursos para el resto la flora y fauna del ecosistema que también proporciona servicios adicionales. En el centro y oeste de Asia, en los actuales Turquía, Irán, Afganistán, Pakistán, Turkmenistán, Kazajistán, Kirguistán, Turkmenistán, Tayikistán o Uzbekistán, existe otro gran agroecosistema asimilable a la dehesa española en la que la especie vegetal dominante y de gran longevidad es el Pistacho silvestre (Pistacia vera) del que se extrae madera para cocinar y calentarse, frutos comestibles; y pastos para el ganado (ovejas, cabras, vacas, etc.), además de servir de refugio y protección para una amplia variedad de especies silvestres.

Otro aspecto que destacar de la dehesa como modelo de agroecosistema sostenible es la carencia o escasez de infraestructuras de gestión del agua. Aunque en la actualidad existen muchas dehesas con infraestructuras para almacenar agua en superficie para utilizarla en periodos de sequía, también es cierto que en muchas ocasiones no ha supuesto una mejora del agroecosistema desde el punto de vista de la sostenibilidad.

Por tanto, lo que define a una dehesa como agroecosistema sostenible, en principio, sería:

  1. La existencia de una o unas pocas especies vegetales destacadas.
  2. El uso directo de la especie o especies vegetales destacadas como recurso por parte del ser humano (alimentos, combustible, …)
  3. El uso indirecto de los recursos del agroecosistema a través de los cultivos y/o el ganado, además de por la caza, la pesca o la recolección.
  4. El mantenimiento de los “servicios impagables” al ser humano por parte de la flora y fauna silvestre.
  5. Ausencia de una gestión, implícita o explicita, del agua.
  6. El almacenamiento de recursos extraídos del agroecosistema para las épocas de carestía (sequias, inundaciones, …)

Durante muchísimos siglos, este tipo de agroecosistemas han sido sostenibles y han permitido la convivencia en mutuo beneficio entre el Hombre y la fauna y flora silvestre. Actualmente, con el uso de la tecnología y la perdida de las tradiciones agrarias, es muy posible que algunos de estos agroecosistemas se encuentren seriamente amenazados en su sostenibilidad y pueden volverse insostenibles en el futuro, si es que no lo son ya.

La dehesa no es el único modelo de agroecosistema mas o menos sostenible que hemos inventado los seres humanos. Hay otras formas de alcanzar la sostenibilidad.

LAS ACEQUIAS DE CAREO.

Las acequias de careo son parte de la infraestructura hidráulica de un complejo agroecosistema muy productivo que existe desde hace muchos cientos de años en el sur de España, concretamente en una comarca conocida como las Alpujarras, provincia de Granada.

Los agroecosistemas en los que el control y gestión del agua accesible los vuelve sostenibles, sólo tienen en común la existencia una infraestructura hidráulica que permite reducir y ralentizar el traslado del agua desde cotas altas a cotas bajas. Esta infraestructura común tiene como elemento básico una red de canales o acequias que siguen, aproximadamente, las curvas a nivel (a la misma altura sobre el nivel del mar) y que permiten la infiltración hacia capas mas profundas del suelo del agua que transportan. Además, los canales de recarga se construyen para que duren mucho tiempo, con pendientes muy reducidas que mitigan en gran medida la erosión hidráulica.

Diagrama de canales de infiltración o recarga.

El sistema de acequias de careo no es único ya que existe otro muy similar que se puede denominar sistema de amunas, muy presente en la zona occidental de América del Sur en los actuales Ecuador, Perú, Bolivia, Chile e, incluso, parte de Argentina. La diferencia fundamental se encuentra en las infraestructuras hidráulicas creadas en cada caso.

Volviendo al sistema de acequias de careo, presenta una serie de componentes interesantes:

  1. Una red de acequias de careo o canales de recarga, entrelazada y extensa, que parte de zonas próximas a las cumbres montañosa y va descendiendo hacia los valles fluviales y las zonas de cultivo. Esta red tiene tres funciones:
    1. Transportar el agua hacia cotas bajas.
    2. Infiltrar el agua hacia capas más profundas del suelo.
    3. Favorecer el crecimiento de los pastos y los árboles que se encuentran entre niveles de acequias de careo.
  2. Una red de aljibes o reservorios de agua en la que se almacena parte de lo recogido por las acequias de careo, debidamente protegidos frente a posibles contaminaciones para que el agua pueda ser utilizada de forma segura.
  3. Una red de abastecimiento de agua para los cultivos y el ganado que emplea tanto el agua procedente de las acequias de careo como la que brota de los manantiales, convenientemente “recargados” por esas mismas acequias de careo mediante infiltración profunda. Los seres humanos recogen agua para su consumo de manantiales separados de los lugares donde bebe el ganado. También se utiliza este agua para el riego de diferentes cultivos.
  4. Una red de puntos de vertido del excedente de agua en ríos o cauces naturales que favorece un caudal mas o menos continuo a lo largo del año.
  5. Una ganadería trashumante que aprovecha los pastos de alta montaña en verano y los pastos de los valles en invierno.
  6. Una serie de zonas de cultivo diferenciadas, donde las que tienen menor pendiente y se encuentran más próximas a los núcleos de población, son de cultivos herbáceos u hortícolas, mientras que, las que tienen una pendiente más acusada, son para cultivos frutales, forestales o pastos para el ganado, normalmente aprovechando los espacios entre acequias de careo a diferentes alturas.
  7. Una red de saltos de agua y diques para recoger, trasvasar o derivar caudales de agua entre acequias de careo a diferentes alturas o entre acequias de careo y cauces naturales.
  8. Una organización comunal que asigna las tareas de construcción, reparación y mantenimiento de las diferentes infraestructuras y que realiza el reparto de agua para los diferentes usos.

Las acequias de careo forman parte de un sistema de gestión del agua accesible bastante completo y, ciertamente, muy sostenible que pervive en la actualidad después de cientos de años de funcionamiento ininterrumpido. Evidentemente, para llegar a este punto de sostenibilidad, el esfuerzo y trabajo de muchas generaciones de los habitantes de la zona, unido al azar y la necesidad de encontrar soluciones a los problemas, facilitan la labor de mantenimiento y control del agroecosistema.

Equilibrio hidráulico o como buscar la sostenibilidad de los agroecosistemas a través de una gestión responsable del agua.

Los agroecosistemas sostenibles/sustentables deben tener el agua suficiente para todos los usos posibles por parte del ser humano y el resto de los seres vivos que habitan en él. En este artículo veremos una aproximación a la forma en que se puede conseguir y mantener un agroecosistema en modo sostenible/sustentable

El equilibrio hidráulico es una forma de valorar la sostenibilidad de un ecosistema mediante la comparación entre la cantidad de agua disponible para su uso y el uso que se hace de ella. Esto quiere decir que, ante una determinada cantidad de agua procedente de la precipitación atmosférica se producen determinados usos como pueden ser la existencia de una determinada población de seres vivos, las aguas superficiales y subterráneas o el contenido de agua del suelo.

Evidentemente, los seres humanos somos usuarios del agua que cae del cielo, tanto para consumo propio como para consumo de nuestros cultivos, ganado o industria. Toda esa agua que utilizamos, obviamente, no está disponible para el resto de los seres vivos del ecosistema lo que condiciona su población, aunque eso no tiene por qué suponer un problema insalvable para el conjunto del ecosistema. Si esto es así, nos encontramos ante un agroecosistema sostenible que se mantiene en el tiempo o sustentable porque puede ser “utilizado” en sucesivos ciclos de tiempo. Hay que tener en cuenta que el resto de los seres vivos proporcionan “servicios” impagables a los seres humanos como pueden ser el control de plagas y enfermedades de nuestros cultivos o ganado, protección contra la erosión (tanto hidráulica como eólica), retención de agua de precipitación, mejora de la infiltración de agua hacia los recursos subterráneos, etc.

EL ECOSISTEMA BASE

Puesto que el Hombre ya lleva una buena temporada sobre este planeta (más de un millón de años, dicen) estaría bien hacer un experimento mental sobre cómo fueron los ecosistemas naturales antes de su llegada y cómo podemos suponer que se alcanzaba el equilibrio hidráulico en ellos.

En este ecosistema natural, al que denominaremos ecosistema base, no existía ningún tipo de regulación o almacenamiento de agua como hacemos actualmente los seres humanos. Tampoco se podía aprovechar el agua subterránea porque, salvo que saliera de la tierra (manantiales naturales) no estaba accesible. Y de utilizar agua desalada, mejor ni pensarlo. Por tanto, este ecosistema solo disponía del agua a la que pueden acceder los seres vivos de manera natural o, de otra forma, sólo disponían del agua accesible. Dependiendo de la cantidad de agua accesible en el ecosistema podía existir en un momento dado mayor o menor población de seres vivos.

Además del agua accesible es de suponer que no toda el agua que caía del cielo era utilizada por los seres vivos, generándose, desde el punto de vista de la utilidad, un agua excedente o inaccesible que podía tener otros usos por parte del territorio en el que se asienta el ecosistema. Entre otros “usos” posibles vamos a destacar los siguientes:

  • Evaporación hacia la atmosfera.
  • Almacenaje (lagos y corrientes superficiales permanentes)
  • Exportación (hacia otros ecosistemas, hacia el mar, a los acuíferos subterráneos, reacciones químico-geológicas, etc.).

De manera que la suma del agua accesible y el agua excedente o inaccesible se correspondía, más o menos exactamente, con el agua disponible de la precipitación atmosférica. Para no complicar el asunto, no incluiremos dentro del agua accesible a las posibles aportaciones de agua desde otros ecosistemas que, en general, vamos a considerar poco significativa e incluida dentro del agua disponible.

 

Por cierto, no se nos debe olvidar que ese ecosistema base estará asociado a un determinado territorio, clima y suelo en el que existen unas determinadas especies de flora y fauna adaptadas al mismo. Y que en todo el planeta no hay un único ecosistema, sino una multitud de ellos que interactúan a su vez unos con otros y con el medio físico.

EL AGROECOSISTEMA SOSTENIBLE/SUSTENTABLE.

Introduzcamos al Hombre en la balanza del equilibrio hidráulico.

Ahora los seres vivos que forman parte de los ecosistemas naturales ya no están solos, sino que hay que incluir a la población humana, los cultivos, el ganado y el uso del territorio. Con uso del territorio nos referimos a nuestras viviendas, granjas, industrias, carreteras y, en general, todas las infraestructuras que los seres humanos necesitamos para vivir o para nuestro ocio, que también es importante. Puesto que los recursos del planeta son limitados y finitos, toda “ocupación” del ecosistema con nuestra población, cultivos, ganado o infraestructuras repercute en la población de seres vivos del resto del ecosistema natural, ya sea reduciendo su población o, directamente, extinguiendo a diferentes especies que no son capaces de “convivir” con nosotros por diferentes motivos. Es cierto que nuestra tecnología nos permite maximizar el rendimiento de los recursos disponibles (mejora vegetal y ganadera, fertilizantes, maquinaria, etc.) de manera que todavía hoy podemos atender, de mejor o peor manera, a una población creciente de seres humanos, pero eso no quiere decir que lo podamos hacer siempre. Debemos poner los ecosistemas a los que afectamos (¿todos?) en modo “sostenible” para que podamos seguir viviendo, con un adecuado nivel de “confort” en el planeta que nos ha visto aparecer.

Bueno, esto está muy bien, pero ¿Cómo lo hacemos?

Ya lo hemos hecho, y no una, sino varias veces a lo largo de la historia de la Humanidad y todavía hoy lo hacemos en algunos ecosistemas naturales intervenidos o agroecosistemas. Actualmente es muy posible que dispongamos de la tecnología, infraestructuras y, probablemente, inteligencia suficiente como para hacer sostenible nuestro uso de los ecosistemas naturales. En los tiempos históricos en los que la humanidad tenía una población relativamente escasa en la inmensidad del planeta, nuestro impacto era también escaso o no lo suficientemente significativo para producir efectos permanentes sobre el ecosistema. Actualmente eso no es así, somos muchísimos seres humanos sobre el planeta y nuestro uso de los recursos naturales finitos está alcanzando cotas que podrían en un futuro colapsar los ecosistemas y ocasionarnos graves problemas. Del cambio climático, mejor ni hablamos.

Por una vez, y que sirva de precedente, vamos a aprender de nuestros aciertos y no de nuestros errores. En la próxima entrega veremos algunos ejemplos de agroecosistemas sostenibles y sacaremos algunas conclusiones al respecto.

Salud Vegetal: Prevención, mantenimiento y gestion.

Proteger a las plantas frente a daños, plagas y enfermedades o apoyar sus defensas naturales. ¿Cuál es la mejor opción?

La salud vegetal es aquel estado de bienestar biológico de una planta que le permite la expresión de su máximo potencial productivo y reproductivo y no meramente la ausencia de daño o enfermedad.

En el caso de las plantas cultivadas, la protección de la salud vegetal se puede entender como el uso de una o varias estrategias orientadas a evitar o reducir los daños al cultivo y a protegerlo de plagas, enfermedades o, incluso, algunas deficiencias nutricionales.

A lo largo de su evolución, las plantas, tanto cultivadas como silvestres, han adoptado diferentes mecanismos para protegerse de condiciones ambientales desfavorables, con mayor o menor éxito.

En el caso de las plantas cultivadas, la adopción de mecanismos de protección frente a condiciones ambientales adversas ha estado condicionada por la acción de mejora vegetal dirigida por el ser humano.

La mejora vegetal ha provocado cambios en algunos de los mecanismos de protección innatos que existían en los precursores silvestres (sustancias antinutricionales, tóxicos, espinas, aromas,…) eliminando, transformando o potenciando a algunos de ellos. Favorecer o no los mecanismos de autoprotección de las plantas cultivadas ha dependido de hasta qué punto favorecían o no los intereses de los seres humanos.

El altramuz (Lupinus mutabilis) es un ejemplo de cultivo que contiene una sustancia poco apetecible para los organismos fitófagos y que se ha conservado porque facilitaba el mantenimiento de un buen estado de salud vegetal. La presencia de esta sustancia en la cosecha no perjudicaba en exceso a su uso ya que  podía eliminarse fácilmente mediante la acción del calor para hacerlo apto para consumo humano y ganadero. Por otra parte, este mismo cultivo también es un ejemplo de como la mejora vegetal puede eliminar las sustancias que favorecen la salud vegetal simplemente para  favorecer los intereses humanos. Existen cultivares mutantes de esta especie, conocidos como altramuces dulces, donde se ha eliminado o reducido  el contenido de estas sustancias para evitar someter a las semillas a la acción del calor y disponer directamente de la cosecha para uso. El cultivar mutante se ha hecho más sensible al ataque de plagas y enfermedades, pero ahora es más fácil utilizarlo.

La salud vegetal de las plantas cultivadas no solo está condicionada por la mejora vegetal, sino que también tiene mucho que ver con el manejo que el ser humano realiza del cultivo. La utilización de herbicidas, plaguicidas, fertilizantes o fertimejorantes, tanto químicos de síntesis como de origen orgánico, es una forma de sustitución de los mecanismos innatos que las plantas cultivadas tienen para mantenerse en buen estado de salud frente a condiciones ambientales adversas de todo tipo. Muchos de estos productos químicos que utilizamos para proteger a los cultivos, acaban sustituyendo o evitando la aparición de mecanismos innatos de autodefensa. La utilización de cultivos transgénicos que incorporan en su código genético la producción de sustancias para mejorar su competencia frente a otras plantas o frente a plagas y enfermedades es solo un paso más en esta sustitución o anticipación a la acción de la mejora “convencional”. El código genético introducido de manera artificial en las plantas transgénicas, generalmente tendrá por objetivo preservar la salud vegetal introduciendo una o varias “armas” bioquímicas nuevas para la autoprotección del cultivo.

ESTRATEGIAS DE DEFENSA CONTRA CONDICIONES AMBIENTALES ADVERSAS.

Desde el punto de vista de su mecanismo de acción, la defensa de las plantas  frente a condiciones ambientales adversas puede agruparse en las siguientes categorías:

  1. Defensa estructural o física.
  2. Defensa bioquímica.
  3. Defensa genética.
  4. Defensa cooperativa.

A diferencia de los animales, las plantas no disponen de células u órganos especializados en la defensa frente a diferentes plagas y enfermedades que les afectan. Puede parecer extraño que las plantas no hayan desarrollado un sistema de defensa similar al de los animales, pero si consideramos la fisiología vegetal y el coste que, en términos energéticos y de recursos propios, supone mantener un “ejercito” especializado en la defensa, tal vez se pueda entender porque las plantas han optado por otros sistemas de protección de su salud.

En lugar de una defensa especializada y en permanente movilización como la que tienen los animales, las plantas optan por una o varias estrategias de defensa que han sido validadas por la evolución en algunos casos y que en otros han sido seleccionadas, a propósito o por conveniencia, por el ser humano.

Algunas especies de plantas cultivadas, como la Chumbera o Nopal (Opuntia ficus-indica) han desarrollado, a lo largo de su evolución natural, una modificación de sus hojas para transformarlas en espinas con objeto de evitar su consumo por parte de los herbívoros y reducir la perdida de agua en su ambiente natural, árido o semiárido. Cuando el ser humano ha tratado de aprovechar a esta especie como cultivo de interés en alimentación animal y humana ha seleccionado variedades a su conveniencia. Por ejemplo, existen variedades en las que se han eliminado las espinas para facilitar el consumo por parte del ser humano (nopal verdura) o los animales. Hay que considerar que, desde el punto de vista energético, la presencia de espinas no supone ninguna ventaja especial para la planta, ya que no sirven para realizar la fotosíntesis y requieren de una serie de recursos materiales que podrían utilizarse, tal vez, de mejor forma en otros lugares.

En otros casos se busca ampliar el rango de cultivo disponible, seleccionando plantas que se adapten a condiciones poco favorables, sencillamente porque no hay mas terreno disponible. Algunos cultivares de plantas de Quinua (Chenopodium quinoa Wild.) se han seleccionado durante siglos para prosperar en suelos con problemas de salinidad debido a las muy particulares condiciones agroecológicas y sociales que restringían su expansión. Solo en tiempos recientes se está produciendo una expansión del cultivo hacia otras latitudes diferentes de su zona tradicional de cultivo y eso debido, casi exclusivamente, a una demanda mundial creciente que no era posible abastecer desde sus zonas de cultivo tradicional.

No siempre la mejora genética elimina o limita los mecanismos de autoprotección de las plantas cultivadas. Los antepasados silvestres del Hinojo (Foeniculum vulgare), presentan una protección bioquímica que se ha mantenido más o menos intacta y que, incluso, se ha potenciado en las variedades cultivadas para mantener unas determinadas cualidades organolépticas (aroma, sabor,…). La conservación de determinadas esencias y aromas en el Hinojo es suficiente como para disuadir a un grupo numeroso de plagas y enfermedades que si afectan a otras plantas hortícolas, pero que no tienen efecto sobre los seres humanos.


A veces la mejora genética incorpora los mecanismos de autoprotección de las plantas de manera artificial, ya sea introduciendo genes nuevos (transgenesis) o seleccionando mutaciones específicas. Los cultivares transgénicos de maíz son un claro ejemplo de como una modificación genética, en este caso artificial, permite soportar determinadas condiciones adversas. Existen cultivares de maíz que, presentan modificaciones en su ADN, tomadas de la bacteria bacillus thuringensis, para expresar proteínas que afectan a la alimentación y desarrollo de algunas larvas de insectos plaga.

Finalmente, algunas especies de plantas, cultivadas o silvestres, son capaces de pedir “cooperación” en la defensa o superación de condiciones adversas. El ataque de un insecto fitófago puede desencadenar la fabricación y liberación de atrayentes de depredadores en un claro ejemplo de cooperación en mutuo beneficio entre planta y animal que se conoce, desde un punto de vista técnico, como alelopatía. El hongo entomopatógeno Beauveria bassiana es capaz de introducirse en el interior de algunas especies de plantas cultivadas (Papaver sonniferum), con efectos muy limitados sobre su desarrollo, a la espera del ataque de algunos insectos plaga. Cuando el insecto plaga intenta alimentarse de la planta que contiene el hongo, consume también al propio hongo que despliega toda su virulencia en el interior del insecto, consumiéndolo desde el interior y destruyéndolo.

No todas las plantas emplean las mismas estrategias de defensa, ni de la misma forma o en todo momento. La opción de utilizar una estrategia, varias o ninguna, depende de si el factor biótico o abiótico está permanentemente en el medio, de si ha sido seleccionado por la evolución o la mejora vegetal o si se vuelve innecesario por el manejo que el ser humano hace del cultivo (plaguicidas, abonado, siembra, plantación, riego, …). En todo caso, el entender como las plantas cuentan con mecanismos de autoprotección frente a condiciones ambientales adversas puede ser muy interesante para dirigir y orientar las acciones de mejora vegetal en interés de los seres humanos.

MECANISMOS DE DEFENSA CONSTITUTIVOS E INDUCIDOS.

Las diferentes estrategias de defensa de las plantas que se han descrito hasta ahora son las opciones de que disponen las plantas, cultivadas o no, para defenderse de condiciones ambientales adversas. Sin embargo, hay que tener en cuenta que mantener un mecanismo de defensa de forma permanente puede ser costoso para la planta en términos de consumo de energía y recursos, siendo más habitual que este mecanismo de autoprotección se encuentre latente a la espera de su activación por alguna señal o ataque desde el entorno. En otras circunstancias, por conveniencia de la planta, los mecanismos de defensa se encuentran “activos” de manera permanente, ya que los beneficios de hacerlo así son superiores a los posibles inconvenientes para la planta en términos de recursos y energía. Piénsese en el caso de las espinas de las plantas de la familia de las Cactáceas, mecanismo de defensa permanente que, además de reducir la transpiración, disuade del consumo de la planta por parte de las especies herbívoras.

Hay muchos ejemplos de mecanismos de defensa que son permanentes o constitutivos de las plantas cultivadas. El Hinojo mantiene una serie de aromas y olores que repelen permanentemente el ataque de algunas plagas y enfermedades e, incluso, mejoran la competencia por el espacio frente a otras plantas. La Chumbera o Nopal, cuenta con espinas que disuaden del eventual consumo de la planta por parte de los herbívoros. El altramuz amargo, mantiene muchas sustancias antinutricionales que disuaden a muchas plagas y enfermedades. Algunas especies del genero Salvia exudan por sus raíces una serie de metabolitos (1,8 cineol y alcanfor) que inhiben el desarrollo de algunas plantas competidoras como la avena común o silvestre (Avena fatua) y otras especies de los géneros Bromus o Festuca o, visto desde otro punto de vista, favorecen la germinación de sus semillas frente a las de las plantas competidoras.

Ejemplo de defensa estructural inducida en la que se genera una capa de corcho entre las zonas sanas e infectadas de la hoja.
Figura 1: Ejemplo de defensa estructural inducida en la que se genera una capa de corcho entre las zonas sanas e infectadas de la hoja. CL=Capa de Corcho; H=Zona foliar sana; I= Zona foliar afectada; P=Felógeno

En cuanto a los mecanismos de defensa inducidos, también existen muchos ejemplos de respuesta de las plantas frente a agentes bióticos y abióticos. En algunos casos la voz de alarma la dan una serie de factores bióticos, procedentes de la propia planta o del huésped o abióticos como pueden ser la aparición de heridas, intoxicaciones, quemaduras, etc, actuando de una forma similar a como lo hacen los antígenos que desencadenan la respuesta inmunitaria en los animales. Es muy frecuente que la alarma se produzca por la acción de unos “mensajeros” bioquímicos, en algunos casos muy específicos, llamados elicitores que provocan la síntesis y acumulación de unas sustancias denominadas fitoalexinas en el huésped con objeto de detener su progreso a través de la planta o provocarle algún tipo de efecto adverso. En otras ocasiones, cuando se produce una herida o se rompe la pared celular de la célula vegetal, se ponen en contacto uno o varios enzimas con uno o varios substratos para fabricar una sustancia que tenga un efecto inhibidor o disuasorio frente al ataque de un agente patógeno, generalmente un insecto o una bacteria.

Como puede verse, la defensa de las plantas es muy flexible y, en algunos casos, incluso más compleja que la que pueden tener los animales. Existen múltiples combinaciones entre las diferentes estrategias de defensa y mecanismos de defensa que se han localizado en la bibliografía consultada.

Combinación de estrategias y mecanismos de defensa que aparecen en la bibliografía (elaboración propia).
Diagrama 2: Combinación de estrategias y mecanismos de defensa que aparecen en la bibliografía (elaboración propia).

Los plaguicidas, tanto orgánicos como de síntesis, se introducen y pueden llegar a sustituir los mecanismos de defensa innatos de las plantas, en la mayoría de los casos induciendo una estrategia de defensa bioquímica, pero sin potenciar o favorecer el despliegue de otras estrategias de defensa en muchas ocasiones. La utilización de rotaciones o combinaciones de cultivos, típica de la agricultura orgánica o ecológica pero también muy frecuente en la agricultura más convencional, es otra forma en que se pueden utilizar los mecanismos de defensa naturales de las plantas utilizando mecanismos de cooperación y mutua protección entre diferentes especies de plantas, aunque no sean simultáneos en el tiempo.

Si el objetivo es una agricultura más sostenible y sustentable, con mayores y mejores producciones de alimentos, entonces investigar y desarrollar productos para preservar y mantener la salud vegetal pasa por introducir, potenciar y preservar las diferentes estrategias de defensa presentes en las plantas cultivadas, ademas de desarrollar mecanismos específicos para su propia protección.

Las alternativas existen, solo hay que saber utilizarlas y potenciarlas.

Fertilizantes y Fertilización. La interacción entre el suelo y los nutrientes vegetales.

Fertilizantes para obtener mayores y mejores producciones agrícolas. El suelo como almacén y distribuidor de los fertilizantes

El uso de los fertilizantes debería ser parte de un programa integrado de buenas prácticas agrícolas con el objetivo de mejorar la producción de los cultivos.

Es difícil estimar con exactitud cuál es la contribución de los fertilizantes minerales al aumento de la producción agrícola, debido a la dependencia que tiene este componente con respecto a otros factores importantes. Sin embargo, si se puede asegurar que los fertilizantes tienen un papel decisivo en la productividad agraria, incluso considerando el importante papel que el desarrollo de nuevas tecnologías, la mecanización agraria y las mejoras en la gestión integrada de los agroecosistemas tienen en este sentido.

Los nutrientes que necesitan las plantas se toman del aire y del suelo, aunque la inmensa mayoría de ellos proceden del suelo. Si uno solo de los nutrientes necesarios para la planta es escaso, el crecimiento de las plantas y el rendimiento del cultivo se reducen. Para obtener un buen rendimiento del cultivo es muy importante proporcionar los nutrientes suficientes en las cantidades que las plantas precisan.

Fertilización, materia orgánica y manejo del suelo.

Antes de pensar en realizar ninguna aplicación de fertilizantes para un cultivo es muy conveniente conocer cuáles son las fuentes de nutrientes accesibles y disponibles en el suelo. Los nutrientes necesarios pueden estar disponibles en el suelo pero en formas inaccesibles para el cultivo, debido a causas físicas, químicas o biológicas. A modo de ejemplo para cada uno de estos motivos:

  1. Una causa física que hace que los nutrientes no estén disponibles en el suelo puede ser la compactación del perfil del suelo por diferentes circunstancias de manejo del suelo (paso de maquinaria, elevada concentración de sales, falta de humedad superficial,….)
  2. Un motivo químico como puede ser un nivel de PH bajo (ácido) que modifica el equilibrio químico del suelo transformando determinados nutrientes esenciales en formas no asimilables por las plantas
  3. Y un motivo biológico puede ser la ausencia de determinados microorganismos fijadores de nitrógeno que viven en simbiosis con algunos cultivos, principalmente de la familia de las leguminosas (trébol, veza, arveja, guisante, haba, lupino, …)

Excepto en el último ejemplo en el que puede ser necesaria la inoculación del microorganismo fijador de nitrógeno junto con la semilla, el mantenimiento de un contenido saludable de materia orgánica en el suelo puede ayudar en gran medida a corregir las deficiencias en el acceso a los nutrientes esenciales. Además, la aportación de materia orgánica es una fuente de nutrientes muy interesante que puede estar muy próxima o accesible al cultivo y que se puede obtener de los excrementos de animales, restos vegetales u otras materias orgánicas como pueden ser las procedentes de la industria alimentaria, industrial y urbana.

Fotografía 1: Imagen de cultivo de Habas (Vicia Faba) que se asocia con bacterias del genero Rhizobium para fijar nitrógeno atmosférico

Aunque la aportación de materia orgánica habitualmente beneficia al cultivo, también es cierto que pueden aparecer problemas de inmovilización de nutrientes esenciales y contaminación ambiental como consecuencia de su uso. Ciertos restos vegetales, como la paja del maíz y de otros cereales, causan una inmovilización de nutrientes tras su incorporación al suelo, desplazando la disponibilidad de nutrientes esenciales hacia el cultivo posterior, simplemente porque los microorganismos del suelo consumen esta materia orgánica y la incorpora a su biomasa. La utilización de estiércoles, purines y otros restos de origen animal, ocasiona efectos no deseados sobre el terreno de cultivo como la dispersión de semillas de malas hierbas, la contaminación de las aguas subterráneas, cambios en el PH del suelo, modificación de la composición de la biota (fauna y flora) del suelo o la dispersión de plagas y enfermedades de las plantas o los animales. La incorporación de restos vegetales contaminados al suelo con elementos de propagación de patógenos, plagas y enfermedades (esporas, semillas,…), favorece la dispersión desde focos puntuales a otras zonas del cultivo.

Para reducir los posibles inconvenientes que supone la utilización de residuos orgánicos “en bruto”, tradicionalmente y a lo largo de los muchos de los siglos en que existe la agricultura, se han establecido rutinas y procesos que mejoran la disponibilidad y accesibilidad a los nutrientes. Entre otros sistemas, que no vamos a describir en el este artículo, se encuentra el compostado de residuos orgánicos de todo tipo, la “maduración” de los estiércoles (utilización diferida), los abonos verdes, fermentación anaerobia de residuos orgánicos diluidos, etc.

Fotografía 2: Detalle de aportación de compost (materia orgánica fermentada y digerida por la biota del suelo) sobre suelo

La incorporación de residuos de cosecha o abonos verdes (cultivos específicamente introducidos en la rotación para incorporar materia orgánica al suelo) y los abonos de origen animal contribuyen a la acumulación de materia orgánica en el suelo. Sin embargo, los efectos sobre el suelo son distintos dependiendo de si la materia orgánica que se incorpora es de origen vegetal o animal, aún en cada caso para iguales tasas de incorporación al suelo.

La utilización de materia orgánica “madurada” o “procesada” mejora la disponibilidad de nutrientes para el cultivo y reduce los inconvenientes

A pesar de estos inconvenientes, lo cierto es que la aportación de materia orgánica al cultivo también proporciona algunas ventajas entre las que destacan:

  • Mejora de la estructura e incrementa la porosidad del suelo.
  • Reducción de la erosión, tanto del agua como del viento, mediante el incremento del tamaño de las partículas, el aumento de la estabilidad de los agregados al agua y la disminución de la compactación.
  • Proporciona recursos energéticos a los organismos del suelo que participan activamente en los ciclos de muchos nutrientes que de esta forma se vuelven disponibles para las plantas, además de participar en la formación y estabilización de la estructura y porosidad del suelo.
  • Mejora la retención de agua y su infiltración hacia capas más profundas del suelo.

Y tiene mucho que ver con la fertilidad porque mejora una propiedad clave del suelo denominada Capacidad de Intercambio Catiónico (CIC).

La CIC es la capacidad que tiene el suelo para retener y liberar iones positivos, gracias a su contenido en arcillas y materia orgánica. Es una propiedad química del suelo, vinculada a la fertilidad, que tiene una componente fija y otra variable que depende del PH. La CIC fija proviene de los coloides inorgánicos (arcillas cristalinas, geles amorfos, óxidos y sesquióxidos de hierro y aluminio), mientras que la CIC variable depende, sobre todo, de coloides orgánicos y sustancias húmicas presentes en la materia orgánica. Cuanto mayor es la fracción de materia orgánica del suelo, mayor es la capacidad de retención de nutrientes, en su mayoría de carga positiva, en el suelo y no solo eso, también la retención de estos nutrientes es más intensa y más accesible para el cultivo.

Un nivel de CIC elevado, implica una mayor capacidad de almacenamiento de nutrientes y mayor accesibilidad para el cultivo.

Ha quedado claro que la aportación de materia orgánica al suelo, a pesar de los inconvenientes, es beneficiosa para la productividad de los cultivos. Sin embargo, lo más interesante de un contenido saludable de materia orgánica en el suelo es como puede ayudar a una gestión sostenible y sustentable de los agroecosistemas.

La materia orgánica del suelo (MOS) es el conjunto de residuos orgánicos del suelo que se encuentra en diferentes fases de descomposición y que se acumula tanto en la superficie como en el propio perfil del suelo. Dentro de la materia orgánica del suelo se suele incluir una fracción viva o biota que participa activamente en los procesos de descomposición y trasformación de los residuos orgánicos, pero no es la única fracción relevante en el suelo. En la mayoría de los suelos es posible distinguir en la materia orgánica dos fracciones:

  • La fracción lábil, compuesta por una serie de residuos orgánicos que son una fuente de energía para la biota presente en el suelo y que mantienen las características químicas de su material de origen (hidratos de carbono, ligninas, proteínas, taninos, ácidos grasos, exudados vegetales, etc). Constituye la mayor parte de la MOS.
  • La fracción húmica, compuesta por residuos orgánicos transformados y más estables que se encuentra constituida por ácidos fúlvicos, ácidos húmicos y huminas. Supone una pequeña parte de la MOS, aunque es mucho más estable y tiene efectos colaterales que mejoran la capacidad de retención de nutrientes en el suelo.

Ambas fracciones están muy relacionadas entre sí y proceden de aportaciones externas (abonos orgánicos) o internas (restos de cosecha, abonos verdes, descomposición de la biota, …). Las prácticas agrícolas son clave para una adecuada gestión del contenido de materia orgánica del suelo.

La labranza es una práctica que se introdujo para facilitar las labores agrícolas, entre las que destacan el control de malezas o malas hierbas, la formación de la cama de semillas que favorezca la germinación y establecimiento del cultivo, la incorporación de fertilizantes y pesticidas al suelo, la incorporación de residuos del cultivo precedente o la mejora en la retención de agua y nutrientes en la solución del suelo. Sin embargo, también es cierto que a pesar de las indudables ventajas que supone para el incremento de la producción de los cultivos, los sistemas de labranza más habituales exponen el suelo a los principales agentes erosivos (agua y viento) y facilitan la mineralización de la materia orgánica, reduciendo o, incluso, eliminando los efectos beneficiosos de un contenido saludable de materia orgánica.

Ciertas prácticas de labranza o laboreo aplicadas a los suelos ayudan a conservar y mejorar el contenido de materia orgánica, reduciendo la degradación, la erosión y la emisión de gases de efecto invernadero, fundamentalmente en forma de CO2 y CH4 (suelos con escasa aireación). Así por ejemplo, la práctica continuada de sistemas de labranza de “no laboreo” o “cero labranza” se ha comprobado que favorecen la acumulación y el mantenimiento de un contenido saludable de materia orgánica, principalmente en los primeros centímetros del perfil del suelo. Y cuando se utiliza un laboreo que no voltea o remueve el perfil del suelo (laboreo mínimo, laboreo de chisel,…), también se ha comprobado que se reduce la perdida de materia orgánica respecto a las practicas convencionales.

Un adecuado contenido de materia orgánica en el suelo mejora el acceso de las plantas a los nutrientes que necesitan, independientemente de si estos ya se encuentran en el suelo o proceden de aportaciones desde el exterior. En general, la aportación de abonos orgánicos no siempre es suficiente como para cubrir todas las necesidades de nutrientes de los cultivos, incluso donde se dispone de grandes cantidades. Hay que tener en cuenta que la falta de las cantidades necesarias de nutrientes, aunque solo sea de uno de ellos, puede afectar de manera significativa al rendimiento del cultivo. Y no todos los abonos orgánicos tienen todo lo que las plantas necesitan, por lo que siempre será necesario utilizar otras estrategias de fertilización adicionales para evitar una reducción de los rendimientos que incluyan la combinación de distintas fuentes de nutrientes.

Es necesaria una fertilización equilibrada que incorpore al suelo los nutrientes que el cultivo necesita, así como un adecuado manejo del suelo para que esos mismos nutrientes puedan almacenarse y se encuentren disponibles.

Los nutrientes necesarios para el crecimiento de las plantas.

Dieciséis son los elementos esenciales para el crecimiento y desarrollo de muchas plantas cultivadas. La mayor parte de estos elementos esenciales o nutrientes necesarios se encuentran en el aire y el suelo. En el suelo, el medio que contiene estos nutrientes es la solución del suelo de la que la capacidad de intercambio catiónico es una propiedad relevante.

Los elementos esenciales se encuentran localizados en distintas ubicaciones:

  1. Aire: carbono (C) como CO2 (dióxido de carbono);
  2. Agua: hidrógeno (H) y oxígeno (O) como H2O (agua);
  3. Suelo:
    1. Nitrógeno (N)
    2. Fósforo (P)
    3. Potasio (K)
    4. Calcio (Ca),
    5. Magnesio (Mg)
    6. Azufre (S)
    7. Hierro (Fe)
    8. Manganeso (Mn),
    9. Zinc (Zn)
    10. Cobre (Cu)
    11. Boro (B)
    12. Molibdeno (Mo)
    13. Cloro (Cl).

Diagrama 1: Diferentes nutrientes necesarios para el crecimiento y desarrollo de las plantas

En determinados cultivos, también puede ser necesario considerar la presencia de otros elementos químicos no esenciales para el crecimiento de todas las plantas pero si beneficiosos para ellas.

Los fertilizantes, abonos o residuos de cultivos aplicados al suelo aumentan la oferta de nutrientes de las plantas

Las funciones de los nutrientes.

Aparte del carbono, que es absorbido por la planta desde la atmosfera, las plantas cogen todos los nutrientes de la solución del suelo. Estos nutrientes extraídos del suelo pueden clasificarse en dos categorías:

  1. Macronutrientes, divididos en nutrientes primarios y secundarios; y
  2. Micronutrientes o microelementos.

Los macronutrientes se necesitan en grandes cantidades, y grandes cantidades tienen que ser aplicadas si el suelo es deficiente en uno o más de ellos. Los suelos pueden ser naturalmente pobres en nutrientes, o pueden llegar a ser deficientes debido a la extracción de los nutrientes por los cultivos a lo largo de los años, o cuando se utilizan variedades de rendimientos altos, las cuales son más demandantes en nutrientes que las variedades tradicionales.

Los micronutrientes, sin embargo, se necesitan en pequeñas cantidades para el crecimiento correcto de las plantas y solo se agregan cuando el suelo no dispone de ellos o se encuentran en formas no accesibles.

Dentro del grupo de los macronutrientes, necesarios para el crecimiento de las plantas en grandes cantidades, hay que destacar a los denominados nutrientes primarios que son el nitrógeno, fósforo y potasio.

El Nitrógeno (N) es el motor del crecimiento de la planta. Proporciona entre el uno a cuatro por ciento del extracto seco de la planta. Es absorbido del suelo bajo forma de nitrato (NO3-) o de amonio (NH4+) dependiendo del PH del suelo. En la planta se combina con componentes producidos por el metabolismo de carbohidratos para formar aminoácidos y proteínas. Como constituyente esencial de las proteínas, está involucrado en todos los procesos principales de desarrollo de las plantas y en el rendimiento del cultivo. Un suministro adecuado de nitrógeno facilita la absorción de los otros nutrientes.

El Fósforo (P), que proporciona entre el 0,1 y el 0,4 por ciento del extracto seco de la planta, juega un papel importante en la transferencia de energía. Es un nutriente esencial para la realización de la fotosíntesis y para otros procesos químico-fisiológicos. Es indispensable para la diferenciación de las células y para el desarrollo de los tejidos, que forman los puntos de crecimiento de la planta. En general, el fósforo suele ser deficiente en la mayoría de los suelos naturales o agrícolas o dónde la fijación limita su disponibilidad.

El Potasio (K), que proporciona entre el uno y el cuatro por ciento del extracto seco de la planta, tiene muchas funciones. Activa más de 60 enzimas (substancias químicas que regulan la vida) y juega un papel fundamental en la biosíntesis de carbohidratos y de proteínas. El K mejora el régimen hídrico de la planta y aumenta su tolerancia a la sequía, heladas y salinidad. Las plantas bien provistas con K sufren menos de enfermedades.

Los nutrientes secundarios son magnesio, azufre y calcio que las plantas también los absorben en cantidades considerables.

El Magnesio (Mg) es el constituyente central de la clorofila, el pigmento verde de las hojas que funciona como un aceptador de la energía que procede del sol. Este es el motivo por el que entre el 15 y el 20 por ciento del magnesio que contiene la planta se encuentra en las partes verdes. El Mg se incluye también en las reacciones enzimáticas relacionadas a la transferencia de energía de la planta.

El Azufre (S) es un constituyente esencial de algunos aminoácidos y de proteínas, estando también relacionado con la formación de la clorofila. En la mayoría de las plantas compone entre el 0,2 y el 0,3 (0,05 a 0,5) por ciento del extracto seco. Por ello, es tan importante en el crecimiento de la planta como el fósforo y el magnesio; pero su función es a menudo subestimada.

El Calcio (Ca) es esencial para el crecimiento de las raíces y como un constituyente del tejido celular de las membranas. Aunque la mayoría de los suelos contienen suficiente disponibilidad de Ca para las plantas, la deficiencia puede darse en los suelos tropicales muy pobres en Ca. Es muy frecuente que este nutriente se utilice para facilitar la disponibilidad en el suelo de otros nutrientes, ya que su aplicación en cantidades suficientes puede ayudar a reducir la acidez del suelo (PH). En otras ocasiones, un exceso de este nutriente bloquea la disponibilidad de distintos nutrientes al incrementar el PH del suelo (PH básico).

El Calcio es un nutriente que tiene mucho que ver con el PH del suelo

Los micronutrientes o microelementos son el hierro (Fe), el manganeso (Mn), el zinc (Zn), el cobre (Cu), el molibdeno (Mo), el cloro (Cl) y el boro (B). Componen un grupo de nutrientes que son claves en el crecimiento de la planta, siendo comparables con las vitaminas en la nutrición animal. Se absorben en cantidades minúsculas y su disponibilidad en las plantas depende mucho del PH del suelo. En algunos casos, un exceso de suministro de alguno de estos nutrientes, como puede ser el caso del Boro, puede tener un efecto adverso o, incluso, toxico sobre el cultivo.

Además de todos estos nutrientes que se han descrito, existen algunos otros nutrientes benéficos que pueden ser importantes para algunos cultivos en concreto. Es el caso del Sodio (Na) para la remolacha azucarera, el Silicio (Si),
para los cereales, en los que fortalece el tallo para resistir el vuelco, o el Cobalto (Co) que es importante en el proceso de fijación de N en las leguminosas.

Algunos microelementos pueden ser tóxicos para las plantas a niveles sólo algo más elevados que lo normal. En la mayoría de los casos esto ocurre cuando el pH es de bajo a muy bajo. La toxicidad del aluminio y del manganeso es la más frecuente, en relación directa con suelos ácidos.

Es importante notar que todos los nutrientes, ya sean necesarios en pequeñas o grandes cantidades, cumplen una función específica en el crecimiento de la planta y en la producción alimentaria y que un nutriente no puede ser sustituido por otro.

Conclusiones.

La aportación de fertilizantes está muy relacionada con la productividad de los cultivos, pero un manejo inadecuado puede causar problemas de contaminación del medio ambiente y de perdida de fertilidad de los suelos.

Un manejo adecuado del suelo que incluya prácticas de laboreo que faciliten la conservación de un contenido saludable de materia orgánica es fundamental para mantener e, incluso, mejorar la fertilidad y reducir las necesidades de fertilizantes.

Los fertilizantes pueden ser necesarios para las plantas en mayores o menores cantidades, pero las cantidades que se precisan para cada cultivo están condicionadas por el propio cultivo, el suelo en el que se desarrolla y las condiciones climáticas en las que se desarrolla.

Fitoestimulantes para la mejora del metabolismo vegetal

También conocidos como bioestimulantes porque en la mayoría de los casos son aptos para su uso en agricultura ecológica u orgánica. Su función es mejorar el metabolismo de las plantas cultivadas y hacerlas mas resistentes a las condiciones adversas del medio en el que se desarrollan.

Los fitoestimulantes agrícolas son preparados a base de sustancias orgánicas, inorgánicas y microorganismos vivos que estimulan el metabolismo vegetal y, en consecuencia, mejoran el rendimiento del cultivo, además de hacerlo más resistente a condiciones ambientales adversas (sequias, plagas, enfermedades, fisiopatías, …).

En función del componente o componentes principales con efecto estimulante sobre el metabolismo vegetal, pueden clasificarse en dos grandes grupos:

  1. Fitoestimulantes vivos
  2. Fitoestimulantes estáticos.

En el primer caso, la generación de nuevos compuestos metabólicos la producen microorganismos y/o activadores metabólicos (enzimas, fitohormonas, …) que son ajenos a la planta y que utilizan lo que ya está en la propia planta y, generalmente, algunos compuestos que forman parte de la propia formulación del fitoestimulante. Los compuestos elaborados por los microorganismos o activadores metabólicos tienen un efecto directo sobre el crecimiento y desarrollo de la planta y, en muchos casos, la hacen más resistente a condiciones ambientales adversas (sequias, plagas, enfermedades, fisiopatías, …). Como utilizan parte de los recursos de que dispone la planta para elaborar nuevos compuestos es muy frecuente que el efecto estimulante tarde en manifestarse. Sin embargo, aquellos que contienen microorganismos vivos capaces de actuar en cooperación con la planta (por ejemplo, el caso de algunos hongos que provocan enfermedades en insectos plaga) pueden mantener sus efectos de estímulo durante largos periodos de tiempo, lo que es una gran ventaja con respecto a otros productos inertes que tienen fecha de caducidad en sus efectos. Estos productos requieren de unas condiciones de formulación, almacenamiento y aplicación muy específicas para mantener con vida a los microorganismos beneficiosos, retardar la degradación de los activadores metabólicos y alargar la vida útil del producto.

En el segundo caso, el fitoestimulante aporta una serie de sustancias, orgánicas o inorgánicas, que la planta utiliza para generar mayores cantidades de compuestos metabólicos con efectos sobre su crecimiento y desarrollo. Su acción sobre el metabolismo de la planta está condicionado por la cantidad de fitoestimulante aportado, por los compuestos que intervienen en su formulación y por la disponibilidad de los compuestos metabólicos (enzimas, grasas, proteínas, aminoácidos,…) de la planta necesarios para elaborar las sustancias con efecto estimulante. Este último aspecto es muy relevante para que la acción estimulante pueda apreciarse de manera significativa en el crecimiento y desarrollo de la planta, siendo muy dependiente de la fisiología de la planta (raíces, hojas, flores, …), de su estado fenológico (desarrollo vegetativo, floración, maduración de los frutos, …) o de si la planta se encuentra sometida a condiciones ambientales adversas (sequias, plagas, enfermedades, fisiopatías, …). Por tanto, aunque el efecto estimulante puede ser más rápido y significativo que en el caso de los fitoestimulantes vivos, también es posible que no se aprecie en absoluto.

Una vez entendido el modo de acción y el efecto que los fitoestimulantes tienen sobre las plantas, comercialmente hay diferentes formulaciones de fitoestimulantes que se pueden agrupar, en función del componente dominante en su composición, en las siguientes categorías:

  1. Fitoestimulantes vivos:
    1. Bacterias promotoras del crecimiento vegetal.
    2. Regeneradores microbianos.
    3. Micorrizas
  2. Fitoestimulantes inertes:
    1. Sustancias húmicas.
    2. Extractos de algas marinas
    3. Hidrolizados de proteínas.
    4. Quitina y quitosan

imagen 1: Bacterias beneficiosas que estimulan el metabolismo de las plantas

Uno de los primeros fitoestimulantes vivos que se empezaron a utilizar comercialmente fueron las bacterias promotoras del crecimiento vegetal (PGPR). Existen diferentes especies de bacteria y, en general, actúan promoviendo el desarrollo de alguno de los órganos de la planta. Un ejemplo de este tipo de bacterias es el Azospirillum brasiliense que tiene la capacidad de producir ciertas hormonas vegetales (auxinas, …) y compuestos similares que favorecen la rizogénesis (desarrollo de las raíces) en el trigo de invierno.

Imagen 2: Las redes miceliares de los hongos beneficiosos pueden actuar como primera linea de defensa de las plantas.

Dentro de esta categoría de fitoestimulantes vivos, los regeneradores microbianos se componen de una colección de bacterias y hongos, habituales en suelos fértiles y ecosistemas equilibrados, junto con otro tipo de sustancias, orgánicas (aminoácidos, enzimas, azucares, …) o inorgánicas, para mejorar la viabilidad y persistencia de los microorganismos inoculados. Es frecuente que este tipo de productos contengan diversas especies antagonistas o depredadoras de algunas plagas y enfermedades de las plantas cultivadas, además de otras especies que facilitan la absorción de nutrientes, elaboran sustancias promotoras de algunas hormonas vegetales u otros metabolitos intermedios necesarios para las plantas. Además de su demostrada utilidad para controlar algunos agentes infecciosos en el suelo, pueden aplicarse para controlar otras plagas presentes en la parte aérea del cultivo. Por ejemplo, los regeneradores microbianos que contienen en su formulación a la bacteria Bacillus Thuringensis presentan un efecto fitosanitario para el control de muy diversos tipos de orugas de varias familias de insectos (lepidóptera, coleóptera, díptera, …). También se han descrito efectos beneficiosos para el control de otras plagas como ácaros (Tetranychus sp, Aceria spp, …), coleópteros (Sesamia inferens, Sphenoforus spp, Otiorhynchus sulcatus, …), lepidópteros (Papilio demoleus, Penicillaria jocosatrix, …), áfidos (Myzus persicae, Aphis sp, Aonidiella aurantii, …), dípteros (Bernisia tabaco, Empoasca flavescens, …) o trips (Scirtothrips dorsalis, Scirtothrips cardamomi, Dialeurodes cardamomi, …). En cualquier caso, pueden servir como una posibilidad adicional para evitar fenómenos de resistencia a los plaguicidas comerciales de diferentes plagas, ya que su amplia variedad de especies de microorganismos y su diversidad de formas de actuación puede llegar a sobrepasar su sistema de defensa inmune y su capacidad de adaptación natural.

Imagen 3: Ectomicorrizas colonizando una raíz vegetal

Finalmente, dentro de la categoría de fitoestimulantes vivos se encuentran los preparados a base de micorrizas que son diferentes especies de hongos asociadas a las raíces del cultivo. Entre otros efectos estimulantes para el cultivo se encuentra el incremento de la resistencia frente al estrés por sequía, el estímulo de la rizogénesis y la mejora de la adaptación a suelos salinos, alcalinos, ácidos e incluso con presencia de metales pesados. Adicionalmente, las micorrizas son también fertimejorantes, es decir, tienen la capacidad de mejorar la disponibilidad de algunos nutrientes esenciales para la planta presentes en el suelo.

Imagen 4: El compost es una forma de añadir compuestos húmicos y fúlvicos a los suelos

En cuanto a los fitoestimulantes estáticos, los más conocidos y comercializados en la actualidad son los preparados a base de sustancias húmicas. Este tipo de sustancias se encuentran de forma natural en los suelos de cultivo, aunque su concentración depende en gran medida del contenido de materia orgánica y del manejo del suelo. Se trata de compuestos, complejos y heterogéneos, que actúan como agregantes de las partículas del suelo y como acumuladores de nutrientes, produciendo mejoras en la textura del suelo y en la trasferencia de nutrientes entre el suelo y las plantas, influenciada por la acción de exudados de las propias plantas y otros componentes del suelo. En función de su peso molecular se clasifican en huminas, ácidos húmicos y ácidos fúlvicos. El principal efecto estimulante sobre el cultivo es que favorece la elongación de las raíces y la secreción de exudados de las plantas que mejoran su resistencia ante condiciones ambientales adversas (sequias, plagas, enfermedades, fisiopatías, …).

Imagen 5: Los extractos de ciertas algas marinas pueden tener un efecto fitoestimulante muy significativo en los cultivos

Otra de las formulaciones de fitoestimulantes estáticos que está ganando cuota de mercado año tras año son los extractos de algas marinas procedentes, sobre todo, de algas pardas de los géneros Ascophylum, Fucus, Macrocystis y Ecklonia. Son extractos utilizados como fitoestimulantes desde muy antiguo. Desde el punto de vista metabólico producen algunos efectos interesantes:

  • Mejoran la producción de polisacáridos, alginatos o carrageninas.
  • Facilitan el acceso de las plantas a algunos micronutrientes esenciales.
  • Favorecen la síntesis de productos promotores del crecimiento vegetal como pueden ser esteroles, betaínas o algunas hormonas vegetales como las auxinas y las giberelinas.

Que producen interesantes resultados sobre las plantas, como pueden ser:

  • Incremento de la resistencia natural del cultivo ante situaciones de estrés hídrico.
  • Mejora de la respuesta defensiva de la planta frente al ataque de organismos patógenos.
  • Retención de metales pesados que no son absorbidos por la planta.
  • El extracto de Ascophyllum nodosum estimula la expresión de genes que codifican la movilización de micronutrientes del suelo tales como Fe, Zn o Cu en algunas especies de Brasicáceas (Colza, Brócoli, Coliflor, …).

Diagrama 1: Representación de como se produce la biosíntesis de aminoácidos y a que van destinados en las plantas.

Los hidrolizados de proteína son mezclas de aminoácidos y péptidos obtenidos de la hidrolisis química o enzimática de proteínas a partir de subproductos agroindustriales de origen vegetal (residuos de cosecha) o animal (colágeno). Son muy útiles cuando el cultivo se desarrolla en suelos con problemas de salinidad. Entre otros productos destacar las betaínas, moléculas nitrogenadas de origen vegetal, que reducen el estrés de la planta relacionado con la salinidad o los hidrolizados enzimáticos de alfalfa que estimulan la síntesis de ciertas enzimas y flavonoides para que el cultivo pueda crecer en condiciones de estrés salino.

La quitina y el quitosan son polímeros orgánicos (el quitosan es un derivado de la quitina) que se utilizan en agricultura porque tienen la capacidad de unirse a componentes celulares de las plantas y actuar como elicitores. Los elicitores son moléculas que señalan la presencia de una amenaza y que se unen a las membranas celulares de las planta para desencadenar una respuesta defensiva frente al ataque de patógenos, daños físicos o estrés ambiental (sequía, salinidad, …).

Algunas formulaciones de fitoestimulantes pueden utilizarse como agente Probiótico (ayuda a mejorar la flora intestinal, …) en animales monogástricos (cerdo, aves, …) para mejorar la asimilación del pienso y reducir el consumo de zoosanitarios (antibióticos, etc.) e, incluso, en alimentación humana con la misma aplicación como agente probiótico.

Los fitoestimulantes, en general, se pueden aplicar de la misma forma que cualquier fitosanitario o fertilizante convencional.

  • Pueden aplicarse directamente sobre el suelo, en forma de granulados o preparados líquidos.
  • Mediante el riego, sobre todo cuando se utiliza fertirrigación.
  • En aplicaciones foliares, en diferentes dosis, tanto para su efecto bioestimulante como para el control de plagas y enfermedades.
  • Algunos de ellos, sobre todo los regeneradores microbianos, se aplican casi exclusivamente sobre el suelo para controlar diferentes plagas, como pueden ser hongos (Phusarium spp, Alternaria spp, Sclerotium spp, Pitium spp, …) o bacterias del suelo (Xanthomona spp, agrobacterium spp, …)

A la hora de adquirir fitoestimulantes hay que tener en cuenta que en muchas ocasiones tienen otros efectos adicionales además de los relacionados con la mejora del metabolismo vegetal. Ya se han comentado los efectos sobre diferentes plagas que afectan a los cultivos, pero los fitoestimulantes también tienen una capacidad regeneradora de suelos importante y son capaces de mejorar su fertilidad. Teniendo todo esto en cuenta hay muchos motivos por los que es interesante y rentable utilizar fitoestimulantes en cultivos comerciales:

  • Por qué colabora en la regulación hormonal de la planta, mejorando el desarrollo de ciertos órganos clave (raíces, frutos, …).
  • Por qué mejora la respuesta defensiva de las plantas frente a ataques de patógenos o situaciones de estrés (sequia, salinidad, heridas, …).
  • Por qué mejora el rendimiento del cultivo.
  • Por qué colabora en la regeneración de los agroecosistemas.
  • Por qué puede ser un elemento más en la construcción de modelos de agricultura sostenible y sustentable en muy diferentes climas y situaciones.

Hay multitud de casas comerciales que comercializan este tipo de productos en muy diferentes formatos y presentaciones. Solo hay que tener cuidado en su uso, ya que la mayoría de ellos contienen sustancias orgánicas o microorganismos vivos que son fundamentales para desplegar su acción, por lo que deben conservarse en lugares donde no se deterioren y puedan mantenerse frescos y vivos como el primer dia.

Fertimejorantes para la mejora de la fertilidad del suelo y la retención de nutrientes.

A diferencia de los fertilizantes convencionales, de base orgánica o inorgánica, los fertimejorantes movilizan y ponen a disposición de las plantas los nutrientes que se encuentran de forma natural en el suelo o que han sido aportados al suelo en formas poco asimilables.

Los fertimejorantes son aquellos preparados a base de microorganismos, sustancias orgánicas o inorgánicas que, aplicados sobre un suelo agrícola, permiten movilizar y poner en disposición de las plantas los nutrientes que necesitan.

No deben confundirse con los fertilizantes convencionales ya que por sí mismos no aportan nutrientes a las plantas sino que modifican las condiciones del suelo para hacer más accesibles los nutrientes que ya se encuentran en el suelo o que se van a aplicar. Por tanto, si los nutrientes no están en el suelo o están en una cantidad insuficiente como para satisfacer las necesidades nutricionales de las plantas, la aplicación de fertimejorantes no producirá efectos sobre el rendimiento del cultivo a diferencia de lo que ocurriría si se utiliza un fertilizante.

Los fertimejorantes no van a suponer, en principio, un cambio a corto plazo de la textura y estructura del suelo, sino que su efecto principal va a ser, fundamentalmente, un cambio en la química del suelo y, en algún caso, un incremento y mejora de la biodiversidad. Este comportamiento sobre el suelo diferencia a este tipo de preparados de las enmiendas, orgánicas o inorgánicas, que si pueden ocasionar efectos mas o menos permanentes sobre la textura y estructura del suelo. Es el caso, por ejemplo, de las enmiendas a base de yeso y materia orgánica en suelos salinos que desagregan las partículas del suelo, favorecen la infiltración y mejoran la fertilidad.

La utilización de fertimejorantes no es incompatible con el uso de fertilizantes, independientemente de que si son de base orgánica o inorgánica, aunque es cierto que aquellos fertimejorantes cuyo ingrediente principal son microorganismos vivos no se ven precisamente favorecidos por el uso de fertilizantes de base inorgánica. En cuanto a la compatibilidad de los fertimejorantes con base en microorganismos respecto de los fertilizantes orgánicos, dependerá de aspectos tales como la presencia de una microflora y microfauna competidora, la presencia de sustancias contaminantes (plaguicidas, metales pesados, antibióticos,…) o el PH del propio fertilizante orgánico para que desarrollen todo su potencial de mejora de la fertilidad.

Se pueden caracterizar tres tipos principales de preparados fertimejorantes de uso en agricultura:

  1. A base de microorganismos vivos.
  2. A base de sustancias orgánicas.
  3. A base de sustancias inorgánicas.

Siendo posible la existencia de formulaciones comerciales donde se combinan dos o más de las categorías anteriores para un mismo producto.

Los fertimejorantes a base de microorganismos vivos se formulan a través de cultivos de microorganismos extraídos, generalmente, del medio natural. Es muy frecuente que estos fertimejorantes incluyan, además de los microorganismos vivos, diferentes sustancias coadyuvantes, nutrientes o enzimas para favorecer la implantación y supervivencia en el suelo. Uno de los fertimejorantes a base de microorganismos vivos, más utilizado y conocido, son los preparados a base de micorrizas. Las micorrizas pertenecen a diferentes especies de hongos del suelo que se asocian a las raíces de las plantas para facilitarles el acceso a los nutrientes del suelo en condiciones adversas de salinidad, PH o déficit hídrico. Además de este efecto de mejora en la accesibilidad a los nutrientes, también suelen tener un efecto fitoestimulante, mejorando la resistencia a la sequía o a la presencia de sustancias contaminantes.

Los fertimejorantes a base de sustancias orgánicas contienen compuestos que cambian la química del suelo, facilitando la liberación de nutrientes en formas disponibles para su asimilación por parte de las plantas. Es muy frecuente que sean utilizados por los microorganismos vivos presentes en el suelo ya que, en algunos casos, son una fuente de recursos alimenticios. Habitualmente, modifican el complejo arcillo-húmico, favoreciendo la retención y almacenamiento de los nutrientes que llegan al suelo, ya sea a través de la descomposición de la materia orgánica o por la aportación de fertilizantes orgánicos o inorgánicos. Uno de los más conocidos y utilizados es el fertimejorante a base de ácidos húmicos y fúlvicos que se asocian con las arcillas del suelo para reforzar el complejo arcillo-húmico. En algunos casos, los ácidos húmicos y fúlvicos tienen una persistencia en el suelo que puede llegar a más de cinco años y se suelen combinar con algunos nutrientes en compuestos mixtos orgánico-inorgánico más estables y accesibles para las plantas en condiciones de PH básico o acido. La importancia de este tipo de sustancias orgánicas es tal que se están realizando pruebas y experimentos para ver si es posible utilizarlas como sumideros de carbono para reducir el cambio climático y el efecto invernadero.

Finalmente se encuentran los fertimejorantes a base de sustancias inorgánicas. Es muy frecuente que se trate de compuestos minerales cuyo componente principal son diferentes tipos de arcillas o sustancias similares. La característica común de esta categoría de fertimejorantes es que presentan una elevada superficie de contacto microscópico con el medio en el que se encuentran, facilitando la retención y captación de nutrientes aplicados al suelo. Algunos de los fertimejorantes más conocidos dentro de esta categoría son las perlitas y vermiculitas, a base de ciertos compuestos minerales de origen volcánico. Comercialmente, este tipo de fertimejorantes es frecuente que no se combinen con otras categorías de fertimejorantes, aunque pueden existir en forma de encapsulados de semillas u otros preparados similares.

El concepto de fertimejorante es un nuevo concepto que busca diferenciar la forma en que actúan los fertilizantes, proporcionando nutrientes a las plantas, de otro tipo de sustancias o preparados que tienen como objetivo mejorar la disponibilidad de nutrientes para las plantas.

Mejora Hidráulica

Conjunto de actuaciones sobre un agroecosistema destinadas a incrementar la disponibilidad y accesibilidad del agua.

La mejora hidráulica es el conjunto de actuaciones sobre un agroecosistema destinadas a incrementar la disponibilidad y accesibilidad del agua. Se incluyen dentro de este conjunto de actuaciones tanto la dotación de infraestructuras para la gestión del agua como las prácticas de manejo del agroecosistema destinadas a mejorar la salud hidráulica. Las medidas que se pueden emplear para la mejora hidráulica se pueden agrupar en las siguientes categorías:

  • Medidas curativas: Medidas para incrementar la accesibilidad al agua o mejorar su disponibilidad. Se incluyen en esta categoría medidas que van desde la construcción de infraestructuras para la mejora de la infiltración o depuración del agua hasta repoblaciones forestales adaptadas a las condiciones ecológicas particulares del área de actuación.
  • Medidas preventivas: Medidas para prevenir o mitigar el riesgo de desabastecimiento hidráulico o degradación de las aguas. Se incluyen en esta categoría todas aquellas medidas que tratan de anticiparse a la aparición de problemas de insuficiencia o deficiencia hidráulica, actuando antes de que aparezcan o, incluso, evitándolos. Una medida preventiva, por ejemplo, podría ser la construcción de aterrazamientos en terrenos con pendientes elevadas para prevenir los efectos de la erosión cuando se ponen en cultivo.
  • Medidas correctivas: Medidas para corregir o subsanar problemas específicos de desabastecimiento hidráulico o degradación de las aguas. Se incluyen en esta categoría todas aquellas actuaciones que intentan resolver o mitigar un deterioro hidráulico puntual o sistemático. Un ejemplo de este tipo de medidas de corrección seria la construcción de una estación depuradora de aguas residuales para resolver un problema de contaminación de aguas superficiales procedentes de un núcleo urbano.

Todas estas medidas tienen un efecto temporal limitado sobre el agroecosistema agrario. Las infraestructuras requieren de mantenimiento periódico para seguir cumpliendo con la función para la que fueron diseñadas. Las prácticas de manejo del agroecosistema deben repetirse y reiterarse en diferentes momentos para que sus efectos tengan continuidad en el tiempo. La Mejora Hidráulica es, por tanto, una estrategia de mejora continua que busca la obtención del máximo rendimiento del agroecosistema para todos los que lo integran y al mismo tiempo un compromiso de sostenibilidad a largo plazo.

Sistema de andenería en Machu Picchu
Imagen 1: Sistema de andenería en Machu Picchu, que produce efectos permanentes sobre la retención de agua y control de la erosión

Las medidas curativas tienen por objeto llegar a un determinado nivel que permita resolver problemas de insuficiencia o deficiencia hidráulica y mitigar las oscilaciones climáticas. Por ello, en la mayoría de los casos, las medidas curativas suponen la construcción de infraestructuras para la gestión del agua, ya sea esta superficial o subterránea. Sin embargo, no hay que pensar que siempre es posible solucionar los problemas mediante la construcción de infraestructuras. Ciertas prácticas agrícolas de conservación de suelos pueden ayudar mucho a la hora de mejorar la disponibilidad o accesibilidad del agua, ya que reducen la escorrentía superficial y colaboran en la limpieza del agua que pasa a su través como auténticos filtros físico-químico-biológicos. En otros casos, técnicas como la plantación en curvas de nivel o el uso de especies vegetales adaptadas a las condiciones específicas de suelo y clima pueden también proporcionar mejoras mas o menos permanentes en el agroecosistema.

Reforestación forestal como medida para la prevención de la erosión hidráulica
Imagen 2: Reforestación forestal como medida para la prevención de la erosión hidráulica

En cuanto a las medidas preventivas, el objetivo es adelantarse a posibles situaciones de deficiencia o insuficiencia hidráulica. En un primer momento puede parecer que la construcción de una infraestructura es una buena opción para almacenar agua para los meses estivales con escasez de precipitaciones o para depurar agua contaminada que se puede utilizar en cultivos agrícolas. Los posibles impactos, positivos o negativos, de la infraestructura sobre el agroecosistema deben tenerse en cuenta y estar preparado tanto para aprovechar las oportunidades de mejora como para mitigar o eliminar los posibles defectos o errores. Por ejemplo, cuando se prevé la construcción de una presa o un reservorio para almacenar agua, habrá que tener en cuenta el arrastre de materiales de la cuenca de captación hacia el vaso de la presa o reservorio, porque es posible que la infraestructura se llene de sedimentos y deje de ser útil. Como en el caso de las medidas curativas, también es posible utilizar medidas preventivas que no requieran de la construcción de infraestructuras, aunque también puedan producir impactos, positivos o negativos, sobre el agroecosistema. Una repoblación forestal previene el deslizamiento de terrenos y reduce la escorrentía superficial, mejorando la infiltración hacia los acuíferos, pero una mala elección de la especie utilizada en la repoblación puede tener un impacto negativo sobre el agroecosistema con cambios en la fertilidad del suelo, pérdida de biodiversidad o aparición de nuevas plagas y enfermedades.

Laboreo mínimo o de conservación para maximizar la conservación de la materia orgánica
imagen 3: Laboreo mínimo o de conservación para corregir la perdida de materia orgánica que se produce en suelos con un laboreo completo.

Finalmente, las medidas correctivas son aquellas que tienen por objeto la corrección o eliminación de las deficiencias que puedan aparecer en el agroecosistema relacionadas con la gestión y conservación del agua. En la mayoría de los casos, se trata de acciones de contingencia en respuesta a la aparición de una deficiencia. Un ejemplo de este tipo de medidas puede ser la construcción de diques o saltos para reducir la aparición de cárcavas o evitar que progresen las que ya han aparecido. En otros casos, la deficiencia ya estaba ahí y es necesario corregirla para que no cause más problemas en el futuro. La aplicación de materia orgánica a los suelos puede ser muy positiva para su regeneración y recuperación o la utilización de cubiertas vegetales entre filas de árboles frutales puede reducir la erosión hídrica y eólica de manera muy importante.

Una estrategia de mejora hidráulica adecuadamente diseñada y aplicada sobre el terreno puede ser de gran ayuda para mitigar los efectos a corto, medio y largo plazo del cambio climático. El almacenamiento y depuración del agua que procede de fenómenos atmosféricos facilita el camino hacia un desarrollo del agroecosistema más sostenible y sustentable en el tiempo.